

THE CONTRIBUTION OF RESILIENCE ASSESSMENT TO IMPACT ASSESSMENT

Note that an extended version of this paper has been published as a professional practice paper in IAPA. The eprint link is https://www.tandfonline.com/eprint/6156K6HYQ8BTGDV9IYWC/full?target=10.1080/14615517.2022.2080492.

Bryan Jenkins

Adjunct Professor, University of Adelaide Australia

bryan.jenkins@adelaide.edu.au

PRESENTATION

Key Elements Underpinning Resilience Assessment

- Describing processes as adaptive cycles
- Defining failure pathways and the associated critical variables and their thresholds for system failure
- Recognising multiple spatial scales as nested adaptive systems
- Identifying management interventions to reduce system vulnerability to disturbance

Examples of Resilience Assessment

- Defining biodiversity criteria for impact assessment of Ord River Irrigation proposal
- Developing environmental programmes to maintain lake values in Wellington Region
- Designing flood protection to address impacts of levee failure Christchurch

ADAPTIVE CYCLE AND FAILURE PATHWAY ANALYSIS

- Interpret issues as adaptive cycles
- Identify critical variables for potential failure pathways and resilience thresholds
- Resilience the capacity of a system to absorb disturbance and still retain its basic function and structure

Adapted from Gunderson and Holling 2002

PHASES OF ADAPTIVE CYCLE

- **1** Exploitation
- Use of resources

2 Accumulation

- Build-up of material or energy

3 Disturbance

- Release that can change system

4 Reorganisation

- 4a Recovery, or
- 4b Shift to alternative system

FAILURE PATHWAYS Key Elements

Y

16.0

6.0

Eutrophication

Irrigated Dairy Farm	Failure Pathways - Disturbances that have potential to cause system failure and a shift to a degraded state	Nutrient Enrichment - Land use intensification
L36/0200 (30.8 m) Nitrate Nitrogen Concentration	Critical Variables - Measures that characterise the processes on failure pathways	Nitrate Nitrogen - Key parameter in determining adverse effects
Phormidium Bloom	Thresholds - Tipping points for critical variables that change the state or function of a socio-ecological system	Algal Blooms - Change in status of the river to a degraded state

NESTED SYSTEMS

Systems operate at different spatial and time scales with linkages between different scales

Example of Irrigation Scheme

- Higher spatial scale: catchment of the irrigation intake
- Lower spatial scale: farms being irrigated

MANAGEMENT INTERVENTIONS TO ADDRESS FAILURE PATHWAYS

- Exploitation phase:
 Reduce pressure on resource
- Accumulation phase
 Address legacy issues
- Disturbance phase
 Increase resilience of the system
- Reorganisation phase *Rehabilitate adverse effects*

ORD RIVER IRRIGATION SCHEME Stage 2

- 36,000 ha of irrigated farms
- 400,000 t sugar mill
- Two stage assessment process
- Regional significance of flora and fauna in project area
- Biodiversity of cracking soil plains
- Only limited areas of bioregion in conservation reserves

RESILIENCE ASSESSMENT FOR BIODIVERSITY CRITERIA

- Regional scale resilience assessment
- Objective to avoid system failure of extinction of any flora and fauna species
- Retain at least 30% of each vegetation association
- Conservation strategy for bioregion and project
- Retention of representative associations
- Designation of buffer areas
- Connections between conservation areas

Project Area Conservation Area

Resilience assessment of lakes in Greater Wellington Region to identify environmental programmes to maintain lake values

Lake Waitawa

Small (16ha), shallow (<7m) coastal lake Small catchment (278ha), pastoral cover 94% Treated wastewater from Forest Lakes Camp Discharges to Waitohu Stream

CRITICAL VARIABLES AND THEIR THRESHOLDS FOR LAKE WAITAWA

THRESHOLDS	
Trophic Level Index 5.8 Compared to national average 4.8	
Frequent blooms compared to "low frequency of nuisance blooms"	
70% hornwort compared to 30% naturally available area with natives	
Over 80% bullies compared to "indigenous fish resilient"	
Max 4cfu/100mL compared to 540cfu/100mL (95 th percentile)	
8.7 mm ³ /L compared to 1.8 mm ³ /L toxic cyanobacteria	
At depth regularly below 2 mg/L threshold detrimental to fish	

CATCHMENT RUNOFF FAILURE PATHWAY & MANAGEMENT INTERVENTIONS

FAILURE PATHWAY	INTERVENTION
EXPLOITATION (catchment) Nutrient intensive farming	Nutrient reduction; Stock exclusion from waterways
ACCUMULATION (catchment) Build up of nutrients in soil & water	Riparian planting
RELEASE (catchment) Discharge from tributaries to lake	Re-establish wetlands
EXPLOITATION (lake) Nutrients into lake	
ACCUMULATION (lake) Build up in water column & sediments	Flocculation; Freshwater mussels; dredging; lock sediments in place
RELEASE (lake) Anoxic sediments release nutrients; Algal growth in water	Destratify lake
REORGANISATION (catchment)	Reduce nutrient intensity of farms

FLOOD PROTECTION MANAGEMENT FOR CHRISTCHURCH

Traditional Approach To Flood Protection

- Provide protection for event of specified return period
- For Christchurch levees designed for 1-in-500-year flow on Waimakariri River
- North Island experience of levee bank failure leading to flooding of "protected areas" and inability of floodwaters to return to the river because of downstream levee banks
- Need to address the consequences of flood flows greater than the design flow

RESILIENCE ASSESSMENT IN PROJECT DESIGN

Resilience assessment addresses the consequences of system failure

- Secondary levee provided along alignment of natural terrace to accommodate 1-in-10,000 year flow
- Storage of breakouts between primary secondary levees
- Return of breakout flows to main channel after flood peak passed
- If 1-in-10,000-year flow exceeded then flood warning and evacuation plan for low-lying areas: breakout storage provides 3 days for preparation

- Ord River Irrigation Impact Assessment - criteria for limiting biodiversity impacts and basis for bioregional conservation
- Environmental programmes for maintaining lake values - identification of critical variables, failure pathways and management interventions
- Project design for impacts of levee failure

 address consequences of impacts when threshold for system failure exceeded

Let's continue the conversation!

Post questions and comments via chat in the IAIA22 platform.

#iaia22

Bryan Jenkins

Adjunct Professor, University of Adelaide Australia

bryan.jenkins@adelaide.edu.au